Carnegie Mellon University

Helnz

Unstructured Data Analysis

Lecture 12: Intro to neural nets & deep
learning

George Chen

What is deep learning?

Classification
units

PIT /AIT

V4 /PIT

Y
Vi/v2 ey
@@(;)@" O@OE

Slide by Phillip Isola Serre, 2014

Basic ldea

Brain/Machine | — “clown fish”

Slide by Phillip Isola

Object Recognition

Edges
\ Segments \
Texture “clown fish’
Parts /
Colors /
Feature extractors Classifier

Slide by Phillip Isola

Object Recognition

| earned
Edges
\ Segments
Texture “clown fish’
Parts
Colors /
Feature extractors Classifier

Slide by Phillip Isola

Neural Network

| earned

“clown fish”

Slide by Phillip Isola

Neural Network

| earned

“clown fish”

Slide by Phillip Isola

Deep Neural Network

| earned

“clown fish”

Slide by Phillip Isola

Crumpled Paper Analogy

binary Classification: 2 crumpled

sheets of papereegesponding tosthe
different Glagses °F
deep learning: serigs (flayers”) of
simple unfolding operations to try to
disentangle the 2 sheets

Analogy: Francois Chollet, photo: George Chen

Representation Learning

Each layer’s output is another way we could represent the input data

L earned

“clown fish”

Representation Learning

Each layer’s output is another way we could represent the input data

| earned

ko

@ “clown fish”
\ S
o
/ L/ v ° L/ v 0
®0 0(/@. ’ 6}/@. :

P a Ky %

\634/@ Q _,
@ - 10

—4) =20 0 2 4 =50 =25 0 25 50

Why Does Deep Learning Work?

Actually the ideas behind deep learning are old (~1980’s)

e Big data

amazoncom ¥ K1 lgl-'t
NETFLIX ‘# fitbit 5 UPMC

NNNNNNNNNNNNNNNNNNNN

e Better hardware

AMD 1

CPU’s
& Moore’s law

e Better algorithms

Structure Present in Data Matters

Neural nets aren’t doing black magic

* |mage analysis: convolutional neural networks (convnets)
neatly incorporates basic image processing structure

* Time series analysis: recurrent neural networks (RNNs)
iIncorporates ability to rememlber and forget things over time

e Note: text Is a time series

e Note: video Is a time series

Handwritten Digit
Recognition Example

Walkthrough of 2 extremely simple neural nets

Handwritten Digit Recognition

flatten weighted sums activation
> > >
(parameterized (can be
by a weight thought of
| matrix W and as post-
28X28 Image a bias b) processing)
length 784 vector inear layer final

(784 input nodes) with 10 nodes output

Handwritten Digit Recognition

weighted sums
>

(parametgrized (2D numpy array
by a weight of dimensions

matrix W and 784-by-10)
a bias (1D numpy array
W™ De with 10 entries)

length 784 vector inear layer
(784 input nodes) with 10 nodes

input lLinear
(1D numpy array with 784 entries) (1D numpy array with 10 entries)

Handwritten Digit Recognition

linear[@] = np.dot(input, W[:, O]) + b[O]
linear[1l] = np.dot(input, W[:, 1]) + b[1]

: /783
WeIgnted SUMS 1 jnear[§1 = > input[i1xW[i, i1 + b[j]
| i=0
(parameterized (2D numpy array
Dy a weight of dimensions

matrix W and 784-by-10)
a bias - (1D numpy array
W™ De with 10 entries)

/84 vector inear layer
put nodes) with 10 nodes

nput lLinear
1 entries) (1D numpy array with 10 entries)

Handwritten Digit Recognition

weighted sums
>

(parameterized
by a weight
matrix W and
a bias b)

length 784 vector inear layer
(784 input nodes) with 10 nodes

Handwritten Digit Recognition

flatten weighted sums activation
> > >
(parameterized (can be
by a weight thought of
| matrix W and as post-
28X28 Image a bias b) processing)
length 784 vector inear layer final

(784 input nodes) with 10 nodes output

Handwritten Digit Recognition

Many different activation functions possible 4 4
3.5 3.5
Example: Rectified linear unit (ReLU) 4 4
zeros out entries that are negative 1 0
0.5 Rel.U 0.5
>
2 2
(can be
- - - “* ' thoughtof
final = np.maximum(®, linear) . thougnt o ;
as post-
“ processing) @ °
S 3}
inear layer final
with 10 nodes output

linear final

Handwritten Digit Recognition

Many different activation functions possible 4 0.17
3.5 0.10
Example: softmax converts a table of 4 0.17
numbers into a prolbability distribution 1 0.00
0.5 softmax . 0.01
2 0.02
(can be
4 0.00
exp = np.exp(linear) , thoughtof
final = exp / exp.sum() , as post- oo
< processing)
) 0.46
inear layer final
with 10 nodes output

linear final

Handwritten Digit Recognition

flatten weighted sums softmax

> > >

(parameterized
by a weight

| matrix W and
28x28 Image a bias b)

length 784 vector inear layer final
(784 input nodes) with 10 nodes output

Handwritten Digit Recognition

Training label: 6

\4

—> | |=—> | | — | Loss/"error” | = error

INnput

Flatten Linear; Softmax 1
|
(10 nodes) 9 astimated Pr(digit 6)

Handwritten Digit Recognition

Demo part 1

Handwritten Digit Recognition

Training label: 6

v

— — — oSS —> error

Categorical
Cross entropy

INnput

Flatten Linear Softmax
(10 nodes)

Handwritten Digit Recognition

Training label: 6

\4

— — — —> — | Loss | — error

Categorical
Cross entropy

INnput

Flatten Linear RelLU Linear Softmax
(512 nodes) (10 nodes)

Handwritten Digit Recognition

Training label: 6

\4

— > » [LOoss | — error

Categorical
Cross entropy

INnput

Flatten Linear Linear
(512 nodes), (10 nodes),
RelLU Softmax

Handwritten Digit Recognition

Demo part 2

Architecting Neural Nets

Basic building block that is often repeated:
linear layer followed by nonlinear activation

e \Without nonlinear activation, two consecutive linear layers
IS mathematically equivalent to having a single linear layet!

How to select # of nodes In a layer, or # of layers?
 These are hyperparameters! Infinite possibilities!

e (Can choose between different options using
hyperparameter selection strategy from earlier lectures

e \ery expensive in practice!

* Much more common in practice: modify existing
architectures that are known to work well
(e.g., ResNet for image classification/object recognition)

PyTorch GitHub Has Lots of Examples

PyTorch Examples

A repository showcasing examples of using PyTorch

e |Image classification (MNIST) using Convnets

 Word level Language Modeling using LSTM RNNs

e Training Imagenet Classifiers with Residual Networks

* Generative Adversarial Networks (DCGAN)

e Variational Auto-Encoders

e Superresolution using an efficient sub-pixel convolutional neural network
* Hogwild training of shared ConvNets across multiple processes on MNIST
e Training a CartPole to balance in OpenAl Gym with actor-critic

e Natural Language Inference (SNLI) with GloVe vectors, LSTMs, and torchtext
* Time sequence prediction - use an LSTM to learn Sine waves

* |Implement the Neural Style Transfer algorithm on images

o Several examples illustrating the C++ Frontend
Additionally, a list of good examples hosted in their own repositories:

e Neural Machine Translation using sequence-to-sequence RNN with attention (OpenNMT)

Find a Massive Collection of Models at
the Model Zoo

ModelZoo

Model Zoo

Discover open source deep learning code and pretrained

models.

Browse Frameworks Browse Categories

Learning a neural net amounts to
curve fitting

We’'re just estimating a function

Neural Net as Function Approximation

¢ EE E I E E E E E E E E =N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NS &SN NS N NSNS NN NN NN SN NN NN N EEEm g

Multinomial logistic regression:

def f(input):
output = softmax(np.dot(input, W) + ib)

return output | x / |
the only things that we are learning

(we fix their dimensions in advance)

We are fixing what the function f looks like in code
and are only adjusting W and b!l!

Neural Net as Function Approximation

Given input, learn a computer program that computes output
Multinomial logistic regression:

output = softmax(np.dot(input, W) + b)
Multilayer perceptron:

intermediate = relu(np.dot(input, W1l) + bl)
output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps
inputs (raw feature vectors) to outputs (predictions)

Complexity of a Neural Net?

* |ncreasing number of layers (depth) makes neural net more
“complex”

* | earn computer program that has more lines of code
e Some times, more parameters may be needed
e |f SO, more training data may be needed

Earlier: multinomial logistic regression had fewer parameters than
multilayer perceptron example

Upcoming: we’ll see examples of deep nets with fewer
parameters than “shallower” nets

