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Lecture 12: Intro to neural nets & deep 
learning



What is deep learning?
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Basic Idea
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Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled 
sheets of paper corresponding to the 

different classes

deep learning: series (“layers”) of 
simple unfolding operations to try to 

disentangle the 2 sheets
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Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s TPU’s
CPU’s 

& Moore’s law

• Better algorithms



Structure Present in Data Matters

Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) 
neatly incorporates basic image processing structure

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time

• Note: text is a time series

• Note: video is a time series



Handwritten Digit 
Recognition Example

Walkthrough of 2 extremely simple neural nets
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with 10 nodes

Handwritten Digit Recognition

…

linear[0] = np.dot(input, W[:, 0]) + b[0]
linear[1] = np.dot(input, W[:, 1]) + b[1]

linear[j] =
783�

i=0

input[i] W[i,j]� + b[j]
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Handwritten Digit Recognition

final 
output

activation

(can be 
thought of 
as post-

processing)

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative
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Handwritten Digit Recognition

final 
output

activation

(can be 
thought of 
as post-

processing)

Many different activation functions possible

Example: softmax converts a table of 
numbers into a probability distribution

exp = np.exp(linear) 
final = exp / exp.sum()
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length 784 vector 
(784 input nodes)

28x28 image

flatten

linear layer 
with 10 nodes

final 
output

weighted sums softmax

(parameterized 
by a weight 

matrix W and 
a bias b)

Handwritten Digit Recognition
Pr(digit 0)
Pr(digit 1)
Pr(digit 2)

Pr(digit 9)

Pr(digit 3)
Pr(digit 4)
Pr(digit 5)
Pr(digit 6)
Pr(digit 7)
Pr(digit 8)

Desired result



Input

Handwritten Digit Recognition

Linear 
(10 nodes)

Flatten Softmax

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

Learning this 
neural net 

means learning 
W and b

1
estimated Pr(digit 6)log

Also called 
fully-connected or 

dense layer

⚠ In PyTorch, softmax is 
included as part of the 

cross entropy loss



Handwritten Digit Recognition

Demo part 1



Input

Handwritten Digit Recognition

Linear 
(10 nodes)

Flatten Softmax

Training label: 6

Loss error
Categorical 

cross entropy

This neural net has a name: multinomial logistic regression 
(when there are only 2 classes, it’s called logistic regression)



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes)

ReLU

Training label: 6

Loss error

Learning this neural net 
means learning parameters 

of both linear layers!

Softmax

Basic building block 
of neural nets: 
linear layer with 

nonlinear activation

Linear 
(10 nodes)

Categorical 
cross entropy



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes), 

ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax
Important: in lecture, 
I will some times use 
this notation instead

Categorical 
cross entropy

This neural net is called a multilayer perceptron 
(# nodes need not be 512 & 10; activations need 

not be ReLU and softmax)



Handwritten Digit Recognition

Demo part 2



Architecting Neural Nets
• Basic building block that is often repeated: 

linear layer followed by nonlinear activation
• Without nonlinear activation, two consecutive linear layers 

is mathematically equivalent to having a single linear layer!

• How to select # of nodes in a layer, or # of layers?
• These are hyperparameters! Infinite possibilities!
• Can choose between different options using 

hyperparameter selection strategy from earlier lectures
• Very expensive in practice! 

(Active area of research: neural architecture search)
• Much more common in practice: modify existing 

architectures that are known to work well 
(e.g., ResNet for image classification/object recognition)



PyTorch GitHub Has Lots of Examples



Find a Massive Collection of Models at 
the Model Zoo



Learning a neural net amounts to 
curve fitting

We’re just estimating a function



Neural Net as Function Approximation

def f(input):

Given input, learn a computer program that computes output

Multinomial logistic regression:

this is a function

output = softmax(np.dot(input, W) + b)

return output
the only things that we are learning 
(we fix their dimensions in advance)

We are fixing what the function f looks like in code 
and are only adjusting W and b!!!



Neural Net as Function Approximation

output = softmax(np.dot(input, W) + b)

Given input, learn a computer program that computes output

Multinomial logistic regression:

Multilayer perceptron:

intermediate = relu(np.dot(input, W1) + b1)

output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps 
inputs (raw feature vectors) to outputs (predictions)



Complexity of a Neural Net?

• Increasing number of layers (depth) makes neural net more 
“complex”
• Learn computer program that has more lines of code
• Some times, more parameters may be needed

• If so, more training data may be needed

Earlier: multinomial logistic regression had fewer parameters than 
multilayer perceptron example

Upcoming: we’ll see examples of deep nets with fewer 
parameters than “shallower” nets


